ON A PROBLEM FOR AN ELASTIC INFINITE SHEET STRENGTHENED BY TWO PARALLEL STRINGERS WITH FINITE LENGTHS THROUGH ADHESIVE SHEAR LAYERS

Authors

  • Aghasi V. Kerobyan Chair of Mechanics, YSU, Armenia

DOI:

https://doi.org/10.46991/PYSU:A/2020.54.3.153

Keywords:

elastic infinite plate, infinite sheet, stringer, contact, adhesive shear layer, system of integral equations, operator equation

Abstract

The article considers the problem for an elastic infinite sheet (plate), which is strengthened on two parallel finite parts of its upper surface by two parallel finite stringers with different elastic properties. The parallel stringers are located asymmetrically with respect to the horizontal axis of the sheet and deform under the action of horizontal forces. The interaction between the infinite sheet and stringers takes place through thin elastic adhesive layers. The problem of determining unknown shear stresses acting between the infinite sheet and stringers is reduced to a system of Fredholm integral equations of second kind with respect to unknown functions, which are specified on two parallel finite intervals. It is shown that in the certain domain of the change of the characteristic parameters of the problem this system of integral equations in Banach space can be solved by the method of successive approximations. Particular cases are considered, the character and behaviour of unknown shear stresses are investigated.

Downloads

Published

2020-12-15

How to Cite

Kerobyan, A. V. (2020). ON A PROBLEM FOR AN ELASTIC INFINITE SHEET STRENGTHENED BY TWO PARALLEL STRINGERS WITH FINITE LENGTHS THROUGH ADHESIVE SHEAR LAYERS. Proceedings of the YSU A: Physical and Mathematical Sciences, 54(3 (253), 153–164. https://doi.org/10.46991/PYSU:A/2020.54.3.153

Issue

Section

Mechanics