EXPLICIT FORM FOR THE FIRST INTEGRAL AND LIMIT CYCLES OF A CLASS OF PLANAR KOLMOGOROV SYSTEMS
DOI:
https://doi.org/10.46991/PYSU:A/2021.55.1.01Keywords:
Kolmogorov system, first integral, periodic orbits, limit cycleAbstract
In this paper we characterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form
\begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( R\left( x,y\right) \exp \left( \dfrac{A\left( x,y\right) }{B\left( x,y\right) }\right) +P\left( x,y\right) \exp \left( \dfrac{C\left( x,y\right) }{D\left( x,y\right) }\right) \right) , \\ \\ y^{\prime }=y\left( R\left( x,y\right) \exp \left( \dfrac{A\left( x,y\right) }{B\left( x,y\right) }\right) +Q\left( x,y\right) \exp \left( \dfrac{V\left( x,y\right) }{W\left( x,y\right) }\right) \right) , \end{array} \right. \end{equation*}
where $A\left( x,y\right)$, $B\left( x,y\right)$, $C\left( x,y\right)$, $D\left( x,y\right)$, $P\left( x,y\right)$, $Q\left( x,y\right)$, $R\left(x,y\right)$, $V\left( x,y\right)$, $W\left( x,y\right)$ are homogeneous polynomials of degree $a$, $a$, $b$, $b$, $n$, $n$, $m$, $c$, $c$, respectively. Concrete example exhibiting the applicability of our result is introduced.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.