THE MOORE-PENROSE INVERSE OF TRIDIAGONAL SKEW-SYMMETRIC MATRICES. I
DOI:
https://doi.org/10.46991/PYSU:A/2023.57.1.001Keywords:
Moore-Penrose inverse, skew-symmetric matrix, tridiagonal matrixAbstract
The present work is devoted to deriving closed form expressions for the elements of the Moore-Penrose inverse of tridiagonal real skew-symmetric matrices. In the first part of the work we obtain results, concerning matrices of even order. A calculation approach for the generalized inverses of odd order matrices is provided.
References
Balonin N.A., Sergeev M.B. Special Matrices: Pseudoinverse, Orthogonal, Hadamard and Cretan. Saint-Petersburg, Polytechnika Publ. (2019), 196 (in Russian). https://doi.org/10.25960/7325-1155-0
Bunch J.R. A Note on the Stable Decomposition of Skew-symmetric Matrices. Math. Comp. 38 (1982), 475-479. https://doi.org/10.2307/2007283
Benner P., Byers R., et al. Cholesky-like Factorization of Skew-symmetric Matrices. Electron. Trans. Numer. Anal. 11 (2000), 85-93. https://etna.ricam.oeaw.ac.at/vol.11.2000pp85-93.dir/pp85-93.pdf
Heinig G., Rost K. Fast Algorithms for Skew-symmetric Toeplitz Matrices. Operator Theory: Advances and Applications 135 (2002), 193-208. https://doi.org/10.1007/978-3-0348-8199-9_12
Greif C., Varah J.M. Iterative Solution of Skew-symmetric Linear Systems. SIAM J. Matrix Anal. Appl. 31 (2009), 584-601. https://doi.org/10.1137/080732390
Meyer C. Matrix Analysis and Applied Linear Algebra. Philadelphia, SIAM (2000), 705.
Strang G. Linear Algebra and Its Applications. Academic Press (1976).
Ben-Israel A., Greville T.N.E. Generalized Inverses: Theory and Applications. New-York, Springer (2003).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.