MICROWAVE ABSORPTION IN METASURFACES INDUCED BY EDDY CURRENTS
DOI:
https://doi.org/10.46991/PYSU:A.2024.58.1.030Keywords:
microwave absorber, metamaterial, graphite metatapesAbstract
Efficient absorption of a metasurface composed of perpendicularly oriented graphite "meta-strips" is experimentally demonstrated, with the length of meta-strips being around half of the incident wavelength. The absorptance of the metasurface under a normally incident electromagnetic field polarized along meta-strips exceeds 90% in the spectrum of 8-12 GHz. The proposed metasurface is featured by wide incidence angle tolerance.
References
Emerson W.H. Electromagnetic Wave Absorbers and Anechoic Chambers Through the Years. IEEE Trans. Antenn. Propag. 21 (1973), 484-490. https://doi.org/10.1109/TAP.1973.1140517
Namai A., Sakurai S., et al. Synthesis of An Electromagnetic Wave Absorber for High-speed Wireless Communication. J. Am. Chem. Soc. 131 (2009), 1170-1173. https://doi.org/10.1021/ja807943v
Munk B.A. Frequency Selective Surfaces. John Wiley and Sons (2000).
Tsai M.W., Chuang T.H., et al. High Performance Midinfrared Narrowband Plasmonic Thermal Emitter. Appl. Phys. Lett. 89 (2006), 173116. https://doi.org/10.1063/1.2364860
Cheng C.W., Abbas M.N., et al. Wideangle Polarization Independent Infrared Broadband Absorbers Based on Metallic Multisized Disk Arrays. Opt. Express 20 (2012), 10376-10381. https://doi.org/10.1364/OE.20.010376
La Spada L., Vegni L. Metamaterial-based Wideband Electromagnetic Wave Absorber. Opt. Express 24 (2016), 5763-5772. https://doi.org/10.1364/OE.24.005763
Wen Q.Y., Zhang H.W., et al. Dual Band Terahertz Metamaterial Absorber: Design, Fabrication, and Characterization. Appl. Phys. Lett. 95 (2009), 241111. https://doi.org/10.1063/1.3276072
Ding F., Cui Y.X., et al. Ultra-broadband Microwave Metamaterial Absorber. Appl. Phys. Lett. 100 (2012), 103506. https://doi.org/10.1063/1.3692178
Popov E., Maystre D., et al. Total Absorption of Unpolarized Light by Crossed Gratings. Opt. Express 16 (2008), 6146-6155. https://doi.org/0.1364/OE.16.006146
Munk B., Munk P., Pryor J. On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) or Oblique Angle of Incidence. IEEE Trans. Antenn. Propag. 55 (2007), 186-193. https://doi.org/10.1109/TAP.2006.888395
Paul C.R. Introduction to Electromagnetic Compatibility. John Wiley and Sons (2006).
Grant J., Escorcia Carranza I., et al. A Monolithic Resonant Terahertz Sensor Element Comprising a Metamaterial Absorber and Micro-bolometer. Laser Photonics Rev. 7 (2013), 1043-1048. https://doi.org/10.1002/lpor.201300087
Parsamyan H., Haroyan H., Nerkararyan Kh. Broadband Tunable Mid-infrared Absorber Based on Conductive Strip-like Meta-atom Elements. Materials Today Communications 31 (2022), 103692. https://doi.org/10.1016/j.mtcomm.2022.103692
Bagmanci M., Karaaslan M., et al. Extremely-broad Band $6$ Metamaterial Absorber for Solar Energy Harvesting Based on Star Shaped Resonator. Opt. Quant. Electron. 49 (2017), 257. https://doi.org/10.1007/s11082-017-1091-7
Parsamyan H., Haroyan H., Nerkararyan Kh. Broadband Microwave Absorption Based on the Configuration Resonance of Wires. Appl. Phys. A 126 (2020), 773. https://doi.org/10.1007/s00339-020-03964-x
Glybovski S., Tretyakov S., et al. Metasurfaces: From Microwaves to Visible. Physics Reports 634 (2016), 1-72. https://doi.org/10.1016/j.physrep.2016.04.004
Landy N.I., Sajuyigbe S., et al. Perfect Metamaterial Absorber. Phys. Rev. Lett. 100 (2008), 207402. https://doi.org/10.1103/PhysRevLett.100.207402
Shulin Sun, Qiong He, et al. Electromagnetic Metasurfaces: Physics and Applications. Advances in Optics and Photonics 11 (2019), 380-478. https://doi.org/10.1364/AOP.11.000380
Siakavellas N.J. Two Simple Models for Analytical Calculation of Eddy Currents in Thin Conducting Plates.
IEEE Transactions on Magnetics 33 (1997), 2245-2257.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Proceedings of the YSU
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.