NON-UNITARIZABLE GROUPS

Authors

  • H. R. Rostami Chair of Algebra and Geometry, YSU

DOI:

https://doi.org/10.46991/PYSU:A/2010.44.3.040

Keywords:

representation of group, unitarizable group, free Burnside group, periodic group

Abstract

A group $G$ is called unitarizable, if every uniformly bounded representation $\pi:G \rightarrow B(H)$ of $G$ on a Hilbert space $H$ is unitarizable. N. Monod and N. Ozawa in [6] prove that free Burnside groups $B(m, n)$ are non unitarizable for arbitrary composite odd number $n=n_1n_2$ , where $n_1\geq 665$ . We prove that for the same $n$ the groups $B(4, n)$ have continuum many non-isomorphic factor-groups, each one of which is non-unitarizable and uniformly non-amenable.

Downloads

Published

2010-10-21

How to Cite

Rostami, H. R. (2010). NON-UNITARIZABLE GROUPS. Proceedings of the YSU A: Physical and Mathematical Sciences, 44(3 (223), 40–43. https://doi.org/10.46991/PYSU:A/2010.44.3.040

Issue

Section

Mathematics